

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Master's Thesis Proposal

Topic: Mitigating Temporal Bias in Pretrained Language Models via Fine-Tuning Strategies

- **Supervisor:** ZeinabSadat Taghavi
- Examiner: Hinrich Schutze

Level: MSc

Summary: Introduction

LLMs exhibit temporal bias due to imbalanced pretraining data, leading to poor performance on historical/future time periods. This thesis designs and evaluates fine-tuning strategies to reduce this bias, enabling robust temporal reasoning across diverse timeframes.

Research Questions:

1. Can task-specific fine-tuning (e.g., temporal span extraction) improve LLMs' temporal reasoning accuracy on underrepresented time periods?

2. How do adversarial training or data augmentation strategies affect model robustness to temporal distribution shifts?

Methodology:

- Develop a fine-tuning framework using temporal tasks (e.g., date-infilled QA, event ordering) and datasets like COMPLEXTEMPQA.

- Experiment with few-shot learning, adversarial training, and synthetic data augmentation for temporal adaptation.

- Compare model performance against baselines using robustness metrics (e.g., accuracy drop across time periods).

Expected Contribution:

A novel fine-tuning framework to mitigate temporal bias, with empirical validation on downstream tasks and analysis of generalization limits.

Requirements: Huggingface, PyTorch, advanced NLP/Transformer knowledge, experience with model fine-tuning.

- Qingyu Tan, Hwee Tou Ng, and Lidong Bing (2023). Towards Benchmarking and Improving the Temporal Reasoning Capability of Large Language Models. DOI: 10.48550/ARXIV.2306.08952. URL: https://arxiv.org/abs/2306.08952
- Raphael Gruber et al. (2024). Complex TempQA: A Large-Scale Dataset for Complex Temporal Question Answering. DOI: 10.48550/ARXIV.2406.04866. URL: https://arxiv.org/abs/2406.04866