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Summary: As large language models (LLMs) become integral to applications that interact with

diverse user groups, addressing biases that may distort factual representation or perpet-
uate stereotypes is crucial Bender et al. 2021. The attached paper: here predominantly
explores biases linked to gender or occupation Bolukbasi et al. 2016; Caliskan, Bryson,
and Narayanan 2017, less attention has been given to other types of bias such as media
bias—how language models may reflect or amplify the political, ideological, or cultural
slants present in their training data.

Aims:
• Collect datasets of various bias types and use their labels as a Ground truth for

what the conclusion of the explanation is Kulshrestha et al. 2017.

• Investigate the correlation between media bias in pre-training datasets and its
influence on LLM outputs Garg et al. 2018.

• Examine how factors like political ideologies, regional biases, and source credibility
affect model responses Gentzkow and Shapiro 2010.

• Employ relevant input-based explanation methods (i.e. which tokens are responsi-
ble for producing a certain output in a model) from XAI methods and tools Lipton
2018.

• Evaluate and Mitigate Bias in Model Development: Investigate potential biases
that may emerge during the model creation process and propose methods to miti-
gate them, ensuring the robustness and fairness of the final model. For example,
having an equal number of samples for each collective group/viewpoint.

• Build on prior research that has assessed bias in generative models using encoder
models.

• Identify prompt features that contribute to or mitigate bias Jiang et al. 2019.

Requirements: Programming skills in Python, Machine Learning Basics, Natural Language Process-
ing (NLP) knowledge, Data Handling (Pandas, Numpy), Bias Measurement Techniques,
Data Science and Statistics, Knowledge of Explainable AI (XAI) and Model Interpretabil-
ity methods.
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